

Principle of EE1 Lesson 3

Prof. Võ̃ Văn Tới
School of Biomedical Engineering
Vice-Provost for Life and Health Science, Engineering and Technology Development International University
Vietnam National Universities - HCMC

OTHER METHODS OF ANALYZING RESISTIVE CIRCUITS

1. MESH CURRENT ANALYSIS

Principle

Principle

Kirchhoff's voltage laws for each mesh:
Mesh 1: $-E_{1}+R_{1} I_{1}+R_{3} I_{1}-R_{3} I_{2}=0$ (1)
Mesh 2: $\quad R_{3} I_{7}+R_{2} I_{7}+E_{7}-R_{3} I_{1}=0$ (2)
(1) $\Rightarrow>\left(R_{1}+R_{3}\right) I_{1}-\quad R_{3} I_{2}=E_{1}\left(1^{\prime}\right)$
(2) $\Rightarrow \quad-R_{3} I_{1}+\left(R_{3}+R_{2}\right) I_{2}=-E_{2}$ (2')

Statement: $\Sigma \mathrm{V}$ of the loads $=\Sigma \mathrm{V}$ of the sources \Leftrightarrow Ohm's law
(1'): Sum of resistances in mesh 1 * current of mesh 1 - Common resistance * current of the mesh 2 = Voltage of the source of mesh 1
(2'): Sum of resistances in mesh 2 * current of mesh 2 - Common resistance * current of the mesh $1=$ Voltage of the source of mesh 2
Rules:

1. Select the currents for each mesh: They must be in the same direction
2. Establish equation like (1') and (2') for each mesh. Attention: relation between mesh current direction and source voltage polarity

Situations and corresponding methods

i. Circuits with only voltage sources
ii. Circuits with voltage source and current sources in the outside meshes
iii. Circuits with voltage source and current source between the meshes => Super-mesh

Example 1

Determine the currents through $4 \mathrm{~V}, 8 \mathrm{~V}$ and 3 V sources, and 3Ω resistor

Solution of example 1

1. Give currents for each mesh
2. Equation of each mesh

$$
\begin{equation*}
\text { M1: }(1+3) \mathrm{I}_{1}-3 \mathrm{I}_{2}-\mathrm{I}_{3}=4+3 \tag{1}
\end{equation*}
$$

M2: $-3 \mathrm{I}_{1}+(3+2+5) \mathrm{I}_{2}-2 \mathrm{I}_{3}=-10$

$$
\begin{equation*}
\text { M3: }-\mathrm{I}_{1}-2 \mathrm{I}_{2}+(4+1+2) \mathrm{I}_{3}=10-3-8 \text { (3) } \tag{2}
\end{equation*}
$$

3. $\Rightarrow \mathrm{I}_{1}=1.2 \mathrm{~A} ; \mathrm{I}_{2}=-0.67 \mathrm{~A} ; \mathrm{I}_{3}=-0.16 \mathrm{~A}$
4. Currents through $4 \mathrm{~V}=\mathrm{I}_{1}=1.2 \mathrm{~A} \uparrow$
5. Currents through $8 \mathrm{~V}=\mathrm{I}_{3}=-0.16 \mathrm{~A}$ or Currents through 8 V is $0.16 \mathrm{~A} \leftarrow$
6. Currents through $3 \mathrm{~V}=\mathrm{I}_{1}-\mathrm{I}_{3}=1.2+0.16=1.36 \mathrm{~A} \longrightarrow$
7. Currents through $3 \Omega=\mathrm{I}_{1}-\mathrm{I}_{2}=1.2+0.67=1.87$

Example 2

Determine the currents through 3Ω resistor
Note: there are current sources in outside meshes

Solution of example 2

1. Give currents for each mesh
2. Equation of each mesh

- M1: $I_{1}=14$
- M2: $-6 \mathrm{I}_{1}+(6+12+3) \mathrm{I}_{2}-3 \mathrm{I}_{3}=-6$
- $\mathrm{M} 3: \mathrm{I}_{3}=-2$

3. $\Rightarrow>I_{2}=4 \mathrm{~A}$
4. Currents through $3 \Omega=\mathrm{I}_{2}-\mathrm{I}_{3}=4-(-2)=6 \mathrm{~A}$

Example 3

Determine the voltage V_{A}
Note: there is a current source between 2 meshes => supermesh

Solution of example 3

1. Give currents for each mesh
2. Supermesh (1) and (2)
3. Equation of each mesh

- $\mathrm{M} 1+\mathrm{M} 2:(11+1) \mathrm{I}_{1}+(6+10) \mathrm{I}_{2}-10 \mathrm{I}_{3}-6 \mathrm{I}_{4}=8$
- M3: $\mathrm{I}_{3}=-3$
(1)
- M4:-6I $+6 \mathrm{I}_{4}=2$
- $\mathrm{I}_{2}-\mathrm{I}_{1}=1$

4. $\Rightarrow \mathrm{I}_{1}=-1.4 \mathrm{~A} ; \mathrm{I}_{2}=-0.4 \mathrm{~A} ; \mathrm{I}_{4}=-0.07 \mathrm{~A}$
5. $\mathrm{V}_{\mathrm{A}}=11 \times 1.4=\underline{\mathbf{1 5 V}}$

2. NODE VOLTAGE METHOD

Principle

Principle

Kirchhoff's curent laws for node A:

$$
\begin{aligned}
& I_{1}+I_{2}=I \\
& \frac{1}{R_{1}} V_{A}+\frac{1}{R_{2}}\left(V_{A}-V_{B}\right)=I(1) \\
& (1)=>\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) V_{A}-\frac{1}{R_{2}} V_{B}=I\left(1^{\prime}\right)
\end{aligned}
$$

Statement: Σ I of the sources $=\Sigma I$ of the loads \Leftrightarrow Ohm's law Sum of conductance at node A * voltage of A - Common conductance * voltage of B = Current of the source that goes to A
Rules:

1. Identify all nodes and ground the biggest node
2. Establish equation like (1') for each node. Attention: direction of current source: positive if source goes in and negative if source goes out the node

Situations and corresponding methods

i. Circuits with only current sources
ii. Circuits with current sources and voltage source connected to ground
iii. Circuits with current sources and voltage source between 2 nodes => Super-node

Example 4

Determine the currents I_{1} and I_{2}

Solution of example 4

1. Identify all nodes
2. Equation for each node

A: $\left(\frac{1}{2}+\frac{1}{3}\right) \mathrm{V}_{\mathrm{A}}-\frac{1}{3} \mathrm{~V}_{\mathrm{B}}=+3$
$\left.\mathrm{B}:-\frac{1}{3} \mathrm{~V}_{\mathrm{A}}+\left(1+\frac{1}{3}+\frac{14}{4}\right) \mathrm{V}_{\mathrm{B}}=-3-1\right)_{(2)}$
$\Rightarrow \mathrm{V}_{\mathrm{A}}=8.07 \mathrm{~V} ; \mathrm{V}_{\mathrm{B}}=-0.83 \mathrm{~V}$
$\Rightarrow \mathrm{I}_{1}=\frac{V_{B}-V_{A}}{3}=\frac{-0.83-8.07}{3}=-\underline{\mathbf{3 A}}$

$$
\mathrm{I}_{2}=\frac{-V_{B}}{1}=\underline{\mathbf{0 . 8 3 A}}
$$

Example 5

Determine the voltages V_{A} and V_{B} Note: There is a voltage source with one polarity connected to the ground

Solution of example 5

1. Identify all nodes
2. Equation for each node

$$
\begin{align*}
& A:\left(\frac{1}{4}+\frac{1}{2}+\frac{1}{5}\right) V_{A}-\frac{1}{2} V_{B}-\frac{1}{4} V_{C}=-2-5 \tag{1}\\
& B:-\frac{1}{2} V_{A}+\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}\right) V_{B}-\frac{1}{1} V_{C}=3+5 \tag{2}\\
& C: V_{C}=4 \\
& \Rightarrow V_{A}=-\mathbf{3 . 4 V} \\
& V_{B}=\underline{\mathbf{5 . 6} V}
\end{align*}
$$

Example 6

Calculate voltage V across 8Ω and current I through 12Ω

Solution of example 6

Calculate voltage V across 8Ω and current I through 12Ω

- Identify all nodes
- Ground big node
- $\mathrm{V}_{\mathrm{A}}=6 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{D}}=-24 \mathrm{~V}$
- Node B: $-\frac{1}{6} \mathrm{~V}_{\mathrm{A}}+\left(\frac{1}{6}+\frac{1}{4}+\frac{1}{12}\right) \mathrm{V}_{\mathrm{B}}-\frac{1}{4} \mathrm{~V}_{\mathrm{C}}-\frac{1}{12} \mathrm{~V}_{\mathrm{D}}=0$
- Node C: $-\frac{1}{4} \mathrm{~V}_{\mathrm{B}}+\left(\frac{1}{4}+\frac{1}{8}\right) \mathrm{V}_{\mathrm{C}}=6$
- $=>\mathrm{V}_{\mathrm{B}}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{C}}=22 \mathrm{~V}=\mathrm{V}$
- $\mathrm{I}=\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}\right) / 12=[9-(-24)] / 12=2.75 \mathrm{~A}$

Example 7

Determine the voltages V_{A} and current I
Note: There is a voltage source between 2 nodes => super-node

Solution of example 7

1. Identify all nodes
2. Super-node B and C
3. Equation for each node
4. $\mathrm{A}:\left(\frac{1}{4}+\frac{1}{2}+\frac{1}{3}\right) \mathrm{V}_{\mathrm{A}}-\frac{1}{4} \mathrm{~V}_{\mathrm{B}}-\frac{1}{2} \mathrm{~V}_{\mathrm{C}}=-2$
5. $\mathrm{B} \& \mathrm{C}:-\frac{1}{4}+\left(\frac{1}{4}+\frac{1}{5}\right) \mathrm{V}_{\mathrm{B}}+\left(\frac{1}{2}+\frac{1}{1}\right) \mathrm{V}_{\mathrm{C}}-\frac{1}{2}=-$
6. $\underset{\text { (3) }}{\mathrm{C}}: \mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}} \mathrm{V}_{\mathrm{C}}=6$
$\begin{aligned} \Rightarrow \mathrm{V}_{\mathrm{A}} & =-2.9 \mathrm{~V} ; \mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{C}}=-3.6 \mathrm{~V} \\ \mathrm{I} & =\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{C}}\right) / 2=(-2.9+3.6) / 2=\underline{\mathbf{0 . 3 5}}\end{aligned}$

Example 8

Determine the voltage V_{A}
Note: There is a voltage source between 2 nodes => super-node

Solution of example 8

1. Identify all nodes
2. Super-node B and C
3. Equation for each node
4. $\mathrm{A}:\left(\frac{1}{1}+\frac{1}{11}\right) \mathrm{V}_{\mathrm{A}}-\frac{1}{1} \mathrm{~V}_{\mathrm{B}}=-8$
5. $\mathrm{B} \& \mathrm{C}:-\frac{1}{1} \mathrm{~V}_{\mathrm{A}}+\frac{1}{1} \mathrm{~V}_{\mathrm{B}}+\frac{1}{10} \mathrm{~V}_{\mathrm{C}}=1+8+3$
(1)
6. $\mathrm{C}: \mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{B}}=2$
$\Rightarrow \mathrm{V}_{\mathrm{A}}=\underline{15 \mathrm{~V}}$

Note: Why did we ignore 6Ω in (2)?

$$
\begin{align*}
B \& C & -\frac{1}{1} V_{A}+\left(\frac{1}{1}+\frac{1}{6}\right) V_{B} \quad+\left(\frac{1}{10}\right. \\
& -\frac{1}{1} V_{A}+\left(\frac{1}{1}\right) V_{B}+\frac{1}{10} V_{C}=1+8+3 \tag{2}
\end{align*}
$$

$$
-\frac{1}{6} \mathrm{~V}_{\mathrm{B}}=1+8+3
$$

3. SOURCE CONVERSION (TRANSFORMATION) METHOD

Method

a) Thevenin form (with E and R in series) $=>$ Norton form: $I=E / R$ and R in parallel
b) Norton form (with I and R in parallel) $=>$ Thevenin form: $E=I R$ and R in series

Warning: do not converse the question

Example 9

Determine the current I

Solution of example 9

Solution of example 9 (cont.)

$I=(4+8) /(2+8)=1.2 \mathrm{~A}$

Example 10

Determine the voltage V

Solution of example 10

$V=2 \times 10=20 \mathrm{~V}$

4. SUPERPOSITION METHOD

Principle

The superposition principle: For all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually => to test the linearity of a function.

Test the linearity

Is function $Y=2 X$ linear?
$X_{1}=1 \Rightarrow Y_{1}=2$
$X_{2}=2 \Rightarrow Y_{2}=4$
Is $Y=2 X^{2}$ linear?
$X_{1}=1 \Rightarrow Y_{1}=2$
$X_{2}=2 \Rightarrow Y_{2}=8$
If $X_{3}=X_{1}+X_{2}=3$
Is $Y_{3}=Y_{1}+Y_{2}$ i.e., $Y_{3}=2+4=6$?
$X_{3}=X_{1}+X_{2}=3$
Test: $X_{3}=3$ => $Y_{3}=6$
Conclusion: This function is linear

Is $Y_{3}=Y_{1}+Y_{2}$ i.e., $Y_{3}=2+8=10$?
Test: $X_{3}=3=>Y_{3}=18$
Conclusion: This function is nonlinear

Superposition theorem

In an electrical circuit with many sources, the voltage or current is equal to the algebraic sum of the responses caused by each independent source acting alone.

Method

1. Keep one source, kill other voltage and current sources

2. Calculate voltage or current due to the one remained source
3. Repeat the same with another source until the last source
4. Sum the results.

Warning: Apply to calculate only V or $\mathrm{I}(\mathrm{V}=\mathrm{RI})$ but not $\mathrm{P}=\mathrm{RI}^{2}$

Example 11: Find I

Example 12

Determine the current I

Solution of example 12

Solution of example 12 (cont.)

$$
\begin{aligned}
\mathrm{V} & =\mathrm{V}_{6}+\mathrm{V}_{18}+\mathrm{V}_{2} \\
& =4
\end{aligned}
$$

Keep 6V
Kill $2 \mathrm{~A}=>$ OC; kill $18 \mathrm{~V}=>$ SC
Voltage divider $\mathrm{V}_{6}=6 \frac{3}{3+1.5}=4 \mathrm{~V}$

Solution of example 12 (cont.)

Solution of example 12 (cont.)

Example 13

Determine the currents $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}

Solution of example 13

$$
I_{1}=I_{1.6}+I_{1.12}+I_{1.9}
$$

$$
I_{2}=I_{2.6}+I_{2.12}+I_{2.9}
$$

$$
I_{3}=I_{3.6}+I_{3.12}+I_{3.9}
$$

Solution of example 13 (cont.)

$$
\begin{aligned}
I_{1} & =I_{1.6}+I_{1.12}+I_{1.9} \\
& =2+\ldots \\
I_{2} & =I_{2.6}+I_{2.12}+I_{2.9} \\
& =2+\ldots \\
I_{3} & =I_{3.6}+I_{3.12}+I_{3.9} \\
& =-2+\ldots
\end{aligned}
$$

Solution of example 13 (cont.)

$$
\begin{aligned}
I_{1} & =I_{1.6}+I_{1.12}+I_{1.9} \\
& =2-4+\ldots \\
I_{2} & =I_{2.6}+I_{2.12}+I_{2.9} \\
& =2+0+\ldots \\
I_{3} & =I_{3.6}+I_{3.12}+I_{3.9} \\
& =-2+0+\ldots
\end{aligned}
$$

Solution of example 13 (cont.)

$$
\begin{aligned}
I_{1} & =I_{1.6}+I_{1.12}+I_{1.9} \\
& =2-4+0=-2 \mathrm{~A} \\
I_{2} & =I_{2.6}+I_{2.12}+I_{2.9} \\
& =2+0+6=8 \mathrm{~A} \\
I_{3} & =I_{3.6}+I_{3.12}+I_{3.9} \\
& =-2+0+3=1 \mathrm{~A}
\end{aligned}
$$

5. THEVENIN AND NORTON METHODS

Concept of networks

Thevenin equivalent circuit

Statement:

1. $\mathrm{V}_{\mathrm{th}}=\mathrm{V}_{\mathrm{AB} \mid \text { oc }}$
2. $R_{\mathrm{th}}=$ Resistance of the dead network

Method:

1. Remove the load

2. Kill all sources then calculate $R_{\text {eq }}$ looked from A and $B=>R_{\text {th }}$
3. Put back all sources then calculate $V_{A B \mid o c}=>V_{\text {th }}$

Example 14: Determine the Thevenin equivalent circuit

Remove the load and kill the source:
$\mathrm{R}_{\mathrm{th}}=\mathrm{R}_{\mathrm{AB} \mid \mathrm{OC}}=3 \Omega$

Example 15

Determine the current I

Solution of example 15

Norton equivalent circuit

Statement:

1. $R_{N}=$ Resistance of the dead network
2. $I_{N}=I_{A B \mid s c}$

Method:

1. Remove the load

2. Kill all sources then calculate $R_{e q}$ looked from A and $B=>R_{N}$
3. Put back all sources, short circuit $A B$ then calculate $I_{A B \mid s c}=>I_{N}$

Example 16: Determine the Norton equivalent circuit

Remove the load and kill the source:

$R_{\text {th }}=R_{A B \mid O C}=3 \Omega$

Example 17

Determine the current I

Solution of example 17

Example 18

Determine the current I

Solution of example 18: Thevenin equivalent

Solution of example 18: Norton equivalent

Example 19:

Find the Thevenin equivalent circuits of the following ones

Ans: $R_{\text {th }}=2 \Omega$
$V_{\text {th }}=5 \mathrm{~V}$

$V_{\text {th }}=14 \mathrm{~V}$

Ans: $\mathrm{R}_{\mathrm{th}}=1 \Omega$
$V_{\text {th }}=7 \mathrm{~V}$

Ans: $\mathrm{R}_{\mathrm{th}}=3 \Omega$
$\mathrm{V}_{\text {th }}=10 \mathrm{~V}$

Maximum power transfer theorem (when R_{L} varies)

1. When $R_{L}=R_{\text {th }}$
2. $P_{\text {Lmax }}=\frac{V_{\text {th }}{ }^{2}}{4 R_{\text {th }}}$

Power transfer efficiency

$$
\eta=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{R_{L}}{R_{L}+R_{\text {th }}}
$$

Example 20

1. Find $P_{\text {Lmax }}$
 2. If $P_{L}=160 W$ find R_{L} and η

Solution of example 20

- $P_{L \max }=\frac{100^{2}}{4 * 10}=250 \mathrm{~W}$
- $P_{L}=R_{L} L^{2}$
- $=R_{L}\left(\frac{100}{10 R_{L}}\right)^{2}=160$
- or $\mathrm{R}_{\mathrm{L}}{ }^{2}-42.5 \mathrm{R}_{\mathrm{L}}+100=0$
- => Solutions: $\mathrm{R}_{\mathrm{L}}=40 \Omega$ and 2.5Ω
- $\eta==\frac{R_{L}}{R_{L}+R_{L}}$
- For $R_{L}=40 \Omega=>\eta_{1}=\frac{40}{40+10} 100=80 \%$
- For $R_{L}=2.5 \Omega \Rightarrow \eta_{2}=\frac{2.5}{2.5+10} 100=20 \%$
- => Take $R_{L}=40 \Omega$ to have $\eta=80 \%$ for the same power.

Võ Văn Tới
School of Biomedical Engineering
International University of Vietnam National Universities
HCM City, Vietnam
Email: vvtoi@hcmiu.edu.vn
Website: www.hcmiu.edu.vn/bme

