

Principle of EE1 Lesson 3

Prof. Võ Văn Tới

School of Biomedical Engineering

Vice-Provost for Life and Health Science, Engineering and Technology Development

International University

Vietnam National Universities – HCMC

OTHER METHODS OF ANALYZING RESISTIVE CIRCUITS

1. MESH CURRENT ANALYSIS

Principle

Principle

Kirchhoff's voltage laws for each mesh:

Mesh 1:
$$-E_1 + R_1I_1 + R_3I_1 - R_3I_2 = 0$$
 (1)

Mesh 2:
$$R_3I_2 + R_2I_2 + E_2 - R_3I_1 = 0$$
 (2)

$$(1) = > (R_1 + R_3) I_1 - R_3 I_2 = E_1 (1')$$

$$(2) = -R_3 I_1 + (R_3 + R_2) I_2 = -E_2 (2')$$

(1'): Sum of resistances in mesh 1 * current of mesh 1 – Common resistance * current of the mesh 2 = Voltage of the source of mesh 1

(2'): Sum of resistances in mesh 2 * current of mesh 2 – Common resistance * current of the mesh $1 = \frac{1}{2}$ Voltage of the source of mesh 2

Rules:

- 1. Select the currents for each mesh: They must be in the same direction
- Establish equation like (1') and (2') for each mesh. Attention: relation between mesh current direction and source voltage polarity

Situations and corresponding methods

- i. Circuits with only voltage sources
- ii. Circuits with voltage source and current sources in the outside meshes
- iii. Circuits with voltage source and current source between the meshes => Super-mesh

Determine the currents through 4V, 8V and 3V sources, and 3Ω resistor

- 1. Give currents for each mesh
- 2. Equation of each mesh

M1:
$$(1+3)I_1 - 3I_2 - I_3 = 4 + 3$$
 (1)

$$M2: -3I_1 + (3+2+5)I_2 - 2I_3 = -10$$
 (2)

$$M3: -I_1 - 2I_2 + (4+1+2)I_3 = 10 - 3 - 8$$
 (3)

3.
$$\Rightarrow$$
 $I_1 = 1.2A$; $I_2 = -0.67A$; $I_3 = -0.16A$

- 4. Currents through $4V = I_1 = 1.2A$
- 5. Currents through $8V = I_3 = -0.16A$ or Currents through 8V is 0.16A

6. Currents through
$$3V = I_1 - I_3 = 1.2 + 0.16 = 1.36A \rightarrow$$

7. Currents through
$$3\Omega = I_1 - I_2 = 1.2 + 0.67 = 1.87$$

Determine the currents through 3Ω resistor

Note: there are current sources in outside meshes

- 1. Give currents for each mesh
- 2. Equation of each mesh

•
$$M1: I_1 = 14$$

•
$$M2: -6I_1 + (6+12+3)I_2 - 3I_3 = -6$$
 (2)

•
$$M3: I_3 = -2$$
 (3)

3.
$$=> I_2 = 4 A$$

4. Currents through
$$3\Omega = I_2 - I_3 = 4 - (-2) = 6A$$

Determine the voltage V_A

Note: there is a current source between 2 meshes => supermesh

- 1. Give currents for each mesh
- 2. Supermesh (1) and (2)
- 3. Equation of each mesh

• M1 + M2:
$$\frac{(11+1)I_1}{(6+10)I_2 - 10I_3 - 6I_4} = 8$$
 (1)

- $M3: I_3 = -3$ (2)
- $M4: -6I_2 + 6I_4 = 2$ (3)
- $\bullet I_2 I_1 = 1 \tag{4}$
- 4. $=> I_1 = -1.4A; I_2 = -0.4A; I_4 = -0.07A$

5.
$$V_A = 11 \times 1.4 = 15V$$

2. NODE VOLTAGE METHOD

Principle

Principle

Kirchhoff's curent laws for node A:

$$I_1 + I_2 = I$$

$$\frac{1}{R_1} V_A + \frac{1}{R_2} (V_A - V_B) = I (1)$$

(1) =>
$$(\frac{1}{R_1} + \frac{1}{R_2}) V_A - \frac{1}{R_2} V_B = I (1')$$

Statement: ΣI of the sources = ΣI of the loads \Leftrightarrow Ohm's law

Sum of conductance at node A * voltage of A – Common conductance * voltage of B = Current of the source that goes to A

Rules:

- 1. Identify all nodes and ground the biggest node
- Establish equation like (1') for each node. Attention: direction of current source: positive if source goes in and negative if source goes out the node

Situations and corresponding methods

- i. Circuits with only current sources
- ii. Circuits with current sources and voltage source connected to ground
- iii. Circuits with current sources and voltage source between 2 nodes => Super-node

Determine the currents I₁ and I₂

- 1. Identify all nodes
- 2. Equation for each node

 $I_2 = \frac{-V_B}{1} = \mathbf{0.83A}$

A:
$$(\frac{1}{2} + \frac{1}{3}) V_A - \frac{1}{3} V_B = +3$$
 (1
B: $-\frac{1}{3} V_A + (1 + \frac{1}{3} + \frac{14}{4}) V_B = -3 - 1$ (2)
=> $V_A = 8.07V$; $V_B = -0.83V$
=> $I_1 = \frac{V_B - V_A}{3} = \frac{-0.83 - 8.07}{3} = -3$

Determine the voltages V_A and V_B Note: There is a voltage source with one polarity connected to the ground

- 1. Identify all nodes
- 2. Equation for each node

A:
$$(\frac{1}{4} + \frac{1}{2} + \frac{1}{5}) V_A - \frac{1}{2} V_B - \frac{1}{4} V_C = -2 - 5$$
 (1)

B:
$$-\frac{1}{2}V_A + (\frac{1}{1} + \frac{1}{2} + \frac{1}{3})V_B - \frac{1}{1}V_C = 3 + 5$$
 (2)

C:
$$V_C = 4$$

$$=>V_A = \underline{-3.4V}$$
 $V_B = \underline{5.6V}$

Calculate voltage V across 8Ω and current I through 12Ω

Calculate voltage V across 8Ω and current I through 12Ω

- Identify all nodes
- Ground big node

•
$$V_{\Delta} = 6V$$

•
$$V_D = -24V$$

• Node B:
$$-\frac{1}{6}V_A + (\frac{1}{6} + \frac{1}{4} + \frac{1}{12})V_B - \frac{1}{4}V_C - \frac{1}{12}V_D = 0$$

• Node C:
$$-\frac{1}{4}V_B + (\frac{1}{4} + \frac{1}{8})V_C = 6$$

• =>
$$V_B = 9V$$
; $V_C = 22V = V$

•
$$I = (V_B - V_D)/12 = [9 - (-24)]/12 = 2.75A$$

Determine the voltages V_A and current I

Note: There is a voltage source between 2 nodes => super-node

- Identify all nodes
- Super-node B and C
- Equation for each node

4. A:
$$(\frac{1}{4} + \frac{1}{2} + \frac{1}{3}) V_A - \frac{1}{4} V_B - \frac{1}{2} V_C = -2$$

5.
$$B\&C: -\frac{1}{4} + (\frac{1}{4} + \frac{1}{5})V_B + (\frac{1}{2} + \frac{1}{1})V_C - \frac{1}{2} = - (2)$$

$$V_A \qquad V_A \qquad V_A \qquad 2 \qquad 4$$

6. C:
$$V_B - V_C = 6$$

=>
$$V_A = -2.9V$$
; $V_B = 2.4V$; $V_C = -3.6V$
 $I = (V_A - V_C) / 2 = (-2.9 + 3.6) / 2 = \underline{\textbf{0.35A}}$

Note: There is a voltage source between 2 nodes => super-node

- 1. Identify all nodes
- 2. Super-node B and C
- 3. Equation for each node

4. A:
$$(\frac{1}{1} + \frac{1}{11}) V_A - \frac{1}{1} V_B = -8$$
 (1)

5. B & C:
$$-\frac{1}{1}V_A + \frac{1}{1}V_B + \frac{1}{10}V_C = 1 + 8 + 3$$
 (2)

6. C:
$$V_C - V_B = 2$$
 (3)

$$\Rightarrow$$
V_A = 15V

Note: Why did we ignore 6Ω in (2)?

B & C:
$$-\frac{1}{1}V_A + (\frac{1}{1} + \frac{1}{6})V_B - \frac{1}{6}V_C + (\frac{1}{10} + \frac{1}{6})V_C - \frac{1}{6}V_B = 1 + 8 + 3$$

 $-\frac{1}{1}V_A + (\frac{1}{1})V_B + \frac{1}{10}V_C = 1 + 8 + 3$ (2)

3. SOURCE CONVERSION (TRANSFORMATION) METHOD

Method

- a) Thevenin form (with E and R in series) => Norton form: I = E/R and R in parallel
- b) Norton form (with I and R in parallel) => Thevenin form: E = IR and R in series

Warning: do not converse the question

Determine the current I

Solution of example 9 (cont.)

Determine the voltage V

4. SUPERPOSITION METHOD

Principle

The superposition principle: For all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually => to test the linearity of a function.

Test the linearity

Is function Y = 2X linear?

$$X_1 = 1 => Y_1 = 2$$

$$X_2 = 2 => Y_2 = 4$$

If
$$X_3 = X_1 + X_2 = 3$$

Is
$$Y_3 = Y_1 + Y_2$$
 i.e., $Y_3 = 2 + 4 = 6$?

Test:
$$X_3 = 3 \Rightarrow Y_3 = 6$$

Conclusion: This function is linear

Is
$$Y = 2X^2$$
 linear?

$$X_1 = 1 => Y_1 = 2$$

$$X_2 = 2 => Y_2 = 8$$

$$X_3 = X_1 + X_2 = 3$$

Is
$$Y_3 = Y_1 + Y_2$$
 i.e., $Y_3 = 2 + 8 = 10$?

Test:
$$X_3 = 3 => Y_3 = 18$$

Conclusion: This function is nonlinear

Superposition theorem

In an electrical circuit with many sources, the voltage or current is equal to the algebraic sum of the responses caused by each independent source acting alone.

Method

1. Keep one source, kill other voltage and current sources

Kill voltage source

Kill current source

- 2. Calculate voltage or current due to the one remained source
- 3. Repeat the same with another source until the last source
- 4. Sum the results.

Warning: Apply to calculate only V or I (V = RI) but not $P = RI^2$

Example 11: Find I

Keep 3A
Kill 12V => SC

$$I_3 = -3 \frac{3}{7+3+5} = -0.6A$$

Example 12

Determine the current I

Solution of example 12

Keep 24V
Kill 6A => OC
Ohm's law

$$I_{24} = -24/(12+12) = -1A$$

Solution of example 12 (cont.)

=4

Keep 6V
Kill 2A => OC; kill 18V => SC
Voltage divider
$$V_6 = 6 \frac{3}{3+1.5} = 4V$$

Solution of example 12 (cont.)

Solution of example 12 (cont.)

Example 13

Determine the currents I_1 , I_2 and I_3

Solution of example 13

$$I_1 = I_{1.6} + I_{1.12} + I_{1.9}$$

$$I_2 = I_{2.6} + I_{2.12} + I_{2.9}$$

$$I_3 = I_{3.6} + I_{3.12} + I_{3.9}$$

Solution of example 13 (cont.)

$$I_{1} = I_{1.6} + I_{1.12} + I_{1.9}$$

$$= 2 + ...$$

$$I_{2} = I_{2.6} + I_{2.12} + I_{2.9}$$

$$= 2 + ...$$

$$I_{3} = I_{3.6} + I_{3.12} + I_{3.9}$$

$$= -2 + ...$$

Solution of example 13 (cont.)

$$I_{1} = I_{1.6} + I_{1.12} + I_{1.9}$$

$$= 2 - 4 + ...$$

$$I_{2} = I_{2.6} + I_{2.12} + I_{2.9}$$

$$= 2 + 0 + ...$$

$$I_{3} = I_{3.6} + I_{3.12} + I_{3.9}$$

$$= -2 + 0 + ...$$

Solution of example 13 (cont.)

$$I_{1} = I_{1.6} + I_{1.12} + I_{1.9}$$

$$= 2 - 4 + 0 = -2A$$

$$I_{2} = I_{2.6} + I_{2.12} + I_{2.9}$$

$$= 2 + 0 + 6 = 8A$$

$$I_{3} = I_{3.6} + I_{3.12} + I_{3.9}$$

$$= -2 + 0 + 3 = 1A$$

5. THEVENIN AND NORTON METHODS

Concept of networks

Thevenin equivalent circuit

Statement:

- 1. $V_{th} = V_{AB|oc}$
- 2. R_{th} = Resistance of the dead network

Method:

- 1. Remove the load
- 2. Kill all sources then calculate R_{eq} looked from A and B => R_{th}
- 3. Put back all sources then calculate $V_{AB|oc} => V_{th}$

Example 14: Determine the Thevenin equivalent circuit

Remove the load and kill the source:

$$R_{th} = R_{AB|OC} = 3\Omega$$

Example 15

Determine the current I

Solution of example 15

Norton equivalent circuit

Statement:

- 1. R_N = Resistance of the dead network
- 2. $I_N = I_{AB|sc}$

Method:

- 1. Remove the load
- 2. Kill all sources then calculate R_{eq} looked from A and B => R_{N}
- 3. Put back all sources, short circuit AB then calculate $I_{AB|sc} => I_{N}$

Example 16: Determine the Norton equivalent circuit

Remove the load and kill the source:

$$R_{th} = R_{AB|OC} = 3\Omega$$

Example 17

Determine the current I

Solution of example 17

Example 18

Determine the current I

Solution of example 18: Thevenin equivalent

Solution of example 18: Norton equivalent

Example 19:

Find the Thevenin equivalent circuits of the following ones

Ans: $R_{th} = 2\Omega$

$$V_{th} = 5V$$

Ans: $R_{th} = 3\Omega$

$$V_{th} = 10V$$

Ans: $R_{th} = 7\Omega$

$$V_{th} = 14V$$

Ans: $R_{th} = 1\Omega$

$$V_{th} = 7V$$

Maximum power transfer theorem (when R_L varies)

1. When
$$R_L = R_{th}$$

$$2. P_{Lmax} = \frac{V_{th}^2}{4R_{th}}$$

Power transfer efficiency

$$\eta = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{R_L}{R_L + R_{\text{th}}}$$

Example 20

- 1. Find P_{Lmax}
- 2. If $P_L = 160W$ find R_L and η

Solution of example 20

•
$$P_{Lmax} = \frac{100^2}{4*10} = 250 \text{ W}$$

• $P_L = R_L I^2$

•
$$P_L = R_L I^2$$

• =
$$R_L \left(\frac{100}{10 R_I} \right)^2 = 160$$

• or
$$R_1^2 - 42.5 R_1 + 100 = 0$$

• => Solutions:
$$R_1 = 40\Omega$$
 and 2.5Ω

•
$$\eta = = \frac{R_L}{R_L + Rth}$$

■ For R_L = 40Ω =>
$$\eta_1 = \frac{40}{40 + 10}$$
 100 = 80%
■ For R_L = 2.5Ω => $\eta_2 = \frac{2.5}{2.5 + 10}$ 100 = 20%

• For
$$R_L = 2.5\Omega = \eta_2 = \frac{2.5}{2.5 + 10} 100 = 20\%$$

• => Take $R_1 = 40\Omega$ to have $\eta = 80\%$ for the same power.

Võ Văn Tới School of Biomedical Engineering International University of Vietnam National Universities HCM City, Vietnam Email: vvtoi@hcmiu.edu.vn

Website: www.hcmiu.edu.vn/bme

