

Principle of EE1 Lesson 4

Prof. Võ Văn Tới

School of Biomedical Engineering

Vice-Provost for Life and Health Science, Engineering and Technology Development of

International University

Vietnam National Universities – HCMC

OPERATIONAL AMPLIFIER (OP-AMP)

Contents

- Physical aspect of an op-amp
- Op-amp characteristics
- Negative feedback circuit:
 - Applications of op-amp
 - Analysis of an op-amp circuit
 - Different features of op-amp utilization
- Real world op-amp

OPERATIONAL AMPLIFIER (Op-Amp)

Very large-scale integration (VLSI) Technology

Op-Amp Basics

Ideal op-amp

Real op-amp

Characteristics of an ideal op-amp

1. Linear vs. saturated zones

Characteristics of an ideal op-amp

- 1. Linear vs. saturated zones
- 2. Infinite input impedance => $I_p = I_n = 0$
- 3. Zero output impedance
- 4. Infinite voltage gain
- 5. Zero common mode gain
- 6. Infinite bandwidth

Negative Feedback

1.
$$v_p = v_n$$

1.
$$v_p = v_n$$

2. $i_p = i_n = 0$

ANALYSIS OF A CIRCUIT USING OP-AMP

Role of an Op-Amp

What are the gains in voltage and power at 600Ω in both situations?

* With op-amp:

Role of an Op-Amp (cont.)

$$i_p = i_n = 0$$

 $v_p = v_n = 60x10^{-3}V$

$$v_o = v_{in} = 60x10^{-3}$$
 (voltage follower)

$$P = (0.06)^2/600 = 6x10^{-6} W$$

* Without op-amp:

$$v_0 = 60.10^{-3} \frac{600}{29,400+600} = 1.2x10^{-3}V$$

$$P = (1.2 \times 10^{-3})^2 / 600 = 2.4 \times 10^{-9} W$$

With op-amp: Voltage gain 50X and

Power gain 2.500X

Non-Inverting input

Given v_{in} and all resistances. Find relationship between v_{o} and v_{in}

Non-Inverting input (cont.)

1.
$$i_p = i_n = 0$$

2.
$$v_p = v_n$$

$$V_p = V_{in}$$

Using voltage divider

$$v_n = v_o \frac{R_1}{R_1 + R_2} = v_{in}$$

=> $v_o = v_{in} \frac{R_1 + R_2}{R_1}$

Inverting input

1.
$$i_p = i_n = 0$$

2. $v_p = v_n = 0$
 $i_f = \frac{v_o}{R_f} = \frac{0 - vin}{R_{in}}$
 $=> v_o = -v_{in} \frac{R_f}{R_{in}}$

Comparison between Non-Inverting and Inverting input features

$$\mathbf{v_o} = \mathbf{v_{in}} \frac{\mathbf{R_1} + \mathbf{R_2}}{\mathbf{R_1}}$$

v_o ≥ v_{in} and same sign

$$\mathbf{v_o} = -\mathbf{v_{in}} \frac{\mathbf{R_2}}{\mathbf{R_1}}$$

 $v_o \ge v_{in}$ or $v_o \le v_{in}$ and in opposite sign

Adding 2 non-inverting inputs

Determine v_p and v_o

Solution

1.
$$i_p = i_n = 0$$

2. $v_p = v_n$
 $i_1 + i_2 = 0$
 $\frac{0.4 - vp}{3.3K} + \frac{1.2 - vp}{4.7K} = 0$
 $\Rightarrow v_p = 0.73V$
 $v_n = v_o \frac{10K}{10K + 100K} = v_p$
 $\Rightarrow v_o = 11 v_p = 8.03V$

Adding 3 inverting inputs: Summer

1.
$$i_p = i_p = 0$$

1.
$$i_p = i_n = 0$$

2. $v_p = v_n = 0$

$$\frac{V_{a}}{R_{a}} + \frac{V_{b}}{R_{b}} + \frac{V_{c}}{R_{c}} = -\frac{V_{o}}{R_{f}}$$

$$= > V_{o} = -R_{f} \left(\frac{V_{a}}{R_{a}} + \frac{V_{b}}{R_{b}} + \frac{V_{c}}{R_{c}} \right)$$

Current to Voltage Converter

The goal of this circuit is to convert a current source into a voltage source

1.
$$i_p = i_n = 0$$

2.
$$v_p = v_n = 0$$

$$i_f = -3.5 \, \mu A$$

$$\Rightarrow$$
 $\mathbf{v}_{o} = 2.2.10^{6} (-3.5 \times 10^{-6}) = -7.7 \text{ V}$

Example

Find the range of α so that the op-amp is not saturated

$$\Rightarrow$$
V_o ≤ + 5V
Or V_o ≥ -5V
And 0 ≤ α ≤ 1

Statement:

1.
$$i_n = i_n = 0$$

1.
$$i_p = i_n = 0$$

2. $v_p = v_n = 0$

Solution

$$i_{in} = \frac{0.25}{1.6K} = -i_{f}$$

$$v_{o} = i_{f} (\alpha 50K + 12K)$$

$$v_{o} = -\frac{0.25}{1.6K} (\alpha 50K + 12K)$$

$$= -0.16 (\alpha 50 + 12)$$

$$* \underline{V_{o}} \ge -5\underline{V}$$

$$=> \alpha \le 0.4$$

$$* \underline{V_{o}} \le +5\underline{V}$$

$$=> \alpha \ge -0.88$$

Therefore $0 \le \alpha \le 0.4$

Exercise

Find the current i_a

Statement:

1.
$$i_p = i_n = 0$$

2.
$$v_p = v_n$$

Solution

Use node technique:

A:
$$(\frac{1}{10K} + \frac{1}{10K})v_A - \frac{1}{10K}v_B - \frac{1}{10K}v_o = 0$$

B&C:
$$-\frac{1}{10K}v_A + (\frac{1}{1K} + \frac{1}{10K} + \frac{1}{10K})v_B - \frac{1}{10K}v_o = 0$$

$$v_C - v_B = 10$$

But
$$v_C = v_A = v_P = v_n => v_A - v_B = 10$$
 (3)

(1) & (2) =>
$$3v_A - 13v_B = 0$$
 (4)

$$(3) & (4) => v_B = 3V$$

$$=> i_a = \frac{3}{1K} = 3mA$$

Difference Amplifier

- The goal of this circuit is to:
 - Compare 2 inputs
 - Eliminate the noise
 - Amplify the difference between 2 inputs
- 2. $i_p = i_n = 0$ 3. $v_p = v_n$

Difference Amplifier

Use node technique:

A:
$$(\frac{1}{R_0} + \frac{1}{R_0})v_n - \frac{1}{R_0}v_a - \frac{1}{R_0}v_o = 0$$
 (1)

B:
$$(\frac{1}{R_b} + \frac{1}{R_d})v_p - \frac{1}{R_b}v_b = 0$$
 (2)

$$(1) => v_o = (\frac{R_c}{R_a} + 1)v_n - \frac{R_c}{R_a}v_a$$
 (1')

(2) =>
$$v_p = \frac{R_d}{R_b + R_d} v_b = v_n$$
 (2')

$$\Rightarrow v_o = \left(\frac{R_a + R_c}{R_a}\right) \left(\frac{R_d}{R_b + Rd}\right) v_b - \frac{R_c}{R_a} v_a \qquad (3)$$

To eliminate the noise i.e., $v_o = 0$ when $v_a = v_b$

(3) =>
$$(\frac{R_a + R_c}{R_a}) (\frac{R_d}{R_b + Rd}) = \frac{R_c}{R_a}$$

Difference Amplifier: Exercise

Design this circuit with gain = 10X, $R_a = 4.7KΩ$ and voltage source v_b sees an input resistance of 220KΩ.

(1) => 4.7K x R_d = R_bR_c

$$\frac{R_c}{4.7K} = 10 => R_c = 47K\Omega$$
and (1) => $\frac{R_d}{R_b} = \frac{R_c}{R_a} = 10$
=> R_d = 10 R_b
(3)
V_b sees an output resistance of 220K i.e., R_b + R_d = 220KΩ
(4)
(3) & (4) => R_b + 10R_b = 220KΩ
$$\Rightarrow R_b = 20K\Omega$$
and R_d = 200KΩ

Gain =
$$R_a R_d = R_b R_c^{10} \qquad (1)$$

$$v_o = \frac{R_c}{R_a} (v_b - v_a) \qquad (2)$$

Difference amplifier: Another perspective

Differential mode input

$$V_{dm} = V_b - V_a$$

Common mode input

$$V_{cm} = (v_a + v_b)/2$$

•
$$V_a = V_{cm} - (1/2) V_{dm}$$

•
$$V_b = V_{cm} + (1/2) V_{dm}$$

•
$$V_0 = A_{cm} v_{cm} + A_{dm} v_{dm}$$

❖A_{cm} : common mode gain

$$A_{cm} = \frac{R_d(R_a + R_c)}{R_a(R_b + R_d)} - \frac{R_c}{R_a}$$

❖A_{dm}: differential mode gain

$$A_{dm} = \frac{1}{2} \left[\frac{R_d (R_a + R_c)}{R_a (R_b + R_d)} + \frac{R_c}{R_a} \right]$$

Common mode rejection ratio:

CMRR = $|A_{dm}/A_{cm}|$ (the higher the better)

Instrumentation amplifier

- 1. Ultrahigh input impedance: 10¹⁵ ohm
- 2. High and stable linear gain: 10 to 1,000
- 3. High Common Mode Rejection Ratio (CMRR): >10,000 or 60-100 dB

Precision Instrumentation Amplifier

AD524

FEATURES

Low noise: 0.3 μ V p-p at 0.1 Hz to 10 Hz Low nonlinearity: 0.003% (G = 1) High CMRR: 120 dB (G = 1000) Low offset voltage: 50 μ V

Low offset voltage drift: 0.5 μV/°C Gain bandwidth product: 25 MHz

Pin programmable gains of 1, 10, 100, 1000 Input protection, power-on/power-off No external components required

Internally compensated

MIL-STD-883B and chips available

16-lead ceramic DIP and SOIC packages and 20-terminal

leadless chip carrier available

Available in tape and reel in accordance with EIA-481A standard

Standard military drawing also available

GENERAL DESCRIPTION

The AD524 is a precision monolithic instrumentation amplifier designed for data acquisition applications requiring high accuracy under worst-case operating conditions. An outstanding combination of high linearity, high common-mode rejection, low offset voltage drift, and low noise makes the AD524 suitable

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

higher linearity C grade are specified from -25°C to +85°C. The S grade guarantees performance to specification over the extended temperature range -55°C to +125°C. The AD524 is available in a 16-lead ceramic DIP, 16-lead SBDIP, 16-lead SOIC wide packages, and 20-terminal leadless chip carrier.

Võ Văn Tới School of Biomedical Engineering International University of Vietnam National Universities HCM City, Vietnam

Email: vvtoi@hcmiu.edu.vn

Website: www.hcmiu.edu.vn/bme

