

## Principle of EE1 Lesson 6

Prof. Võ Văn Tới<br>School of Biomedical Engineering<br>Vice-Provost for Life and Health Science, Engineering and Technology<br>Development of<br>International University<br>Vietnam National Universities - HCMC

## Inductor and Inductance

## Phenomenon

## Inductor is charging



Inductor is discharging, it acts like an energy source


## Inductors



## Transformer



## Symbols of inductor




Transformer

## Inductance

$L=\frac{\mu N^{2} A}{l}$
Where:
$L=$ Inductance in henries $(H)$
$\mu=$ permeability $(W b / A \cdot m)$
$N=$ number of turns in coil
$A=$ area encircled by coil $\left(m^{2}\right)$
$l=$ lenth of coil ( m )


## Basic notes

1. Inductor is a storing energy element: it can be charged and discharged => time constant $\tau=L / R_{\text {th }}$
2. Empty => Open switch, Full => Closed switch
3. Magnetic flux $\varphi[\mathrm{Wb}]=\mathrm{L}[\mathrm{H}]$. I [A]
4. Stored energy $W[J]=1 / 2 L[H] . I^{2}[A]$
5. Current cannot change instantly $i\left(0^{+}\right)=i\left(0^{-}\right)$
6. Voltage changes instantly $\mathrm{v}(0)=$ max
7. $\mathrm{v}_{\mathrm{L}}(\mathrm{t})=\frac{d \varphi}{d t}=\mathrm{L} \frac{d i}{d t}$

## Inductor connections

- Series

$$
\begin{aligned}
& \text { o Same current } \\
& o L_{\text {eq }}=L_{1}+L_{2}+L_{3}+\ldots
\end{aligned}
$$

- Parallel
- Same voltage V
o $1 / L_{e q}=1 / L_{1}+1 / L_{2}+1 / L_{3}+\ldots$


## General equations

$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{I}_{\mathrm{ss}}+\mathrm{k} e^{-\frac{t}{\tau}}$

- $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ : instantaneous current valid for all $t$
- $\mathrm{I}_{\mathrm{ss}}$ : steady state current i.e. when $\mathrm{i}_{\mathrm{L}}(\infty)$
- k : constant $=\mathrm{I}_{\mathrm{L}}(0)-\mathrm{I}_{\mathrm{ss}}$
- $\tau=L / R_{t h}$
$\mathrm{V}_{\mathrm{L}}(\mathrm{t})=\frac{d \varphi}{d t}=\mathrm{L} \frac{d i}{d t}$


# Comparison between Capacitor and Inductor 



| Capacitor |  | Switch |  |
| :--- | :--- | :--- | :--- |
| Full |  | Inductor |  |
| Empty |  | Closed |  |
|  |  | Full |  |

## Capacitor

$\mathrm{v}_{\mathrm{c}}(\mathrm{t})=\mathrm{V}_{\mathrm{ss}}+\mathrm{k} e^{-\frac{t}{\tau}}$

- $\mathrm{v}_{\mathrm{c}}(\mathrm{t})$ : instantaneous voltage valid for all $t$
- $\mathrm{V}_{\mathrm{ss}}$ : steady state voltage i.e. when $\mathrm{v}_{\mathrm{c}}(\infty)$
- k: constant $=\mathrm{V}_{\mathrm{C}}(0)-\mathrm{V}_{\mathrm{ss}}$
- $\tau=R_{t h} C$
$\mathrm{i}_{\mathrm{c}}(\mathrm{t})=\mathrm{C} \frac{d v}{d t}$


## Inductor

$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{I}_{\mathrm{ss}}+\mathrm{k} e^{-\frac{t}{\tau}}$

- $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ : instantaneous current valid for all $t$
- $\mathrm{I}_{\mathrm{ss}}$ : steady state current i.e. when $\mathrm{i}_{\mathrm{L}}(\infty)$
- k: constant $=\mathrm{I}_{\mathrm{L}}(0)-\mathrm{I}_{\mathrm{ss}}$
- $\tau=L / R_{t h}$
$\mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{L} \frac{d i}{d t}$


## Example 1



Switch 1 and 2 were open for a long time, at t = 0 sec, 1 closes then 1h later 2 closes
Find: $i_{R}, i_{C}, i_{L}, V_{R}, V_{C}, V_{L}$
At $\mathrm{t}=0^{-}, \mathrm{t}=0^{+}, \mathrm{t}=1 \mathrm{~h}^{-}, \mathrm{t}=1 \mathrm{~h}^{+}, \mathrm{t} \rightarrow \infty$

## Solution of ex. 1

$t=0^{-}$
All switches are open => everything is 0


## Solution of ex. 1 (cont.)

|  | $\mathrm{i}_{\mathrm{R}}[\mathrm{A}]$ | $\mathrm{i}_{\mathrm{C}}[\mathrm{A}]$ | $\mathrm{i}_{\mathrm{L}}[\mathrm{A}]$ | $\mathrm{v}_{\mathrm{R}}[\mathrm{V}]$ | $\mathrm{v}_{\mathrm{c}}[\mathrm{V}]$ | $\mathrm{v}_{\mathrm{L}}[\mathrm{V}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}=0$ - | 0 | 0 | 0 | 0 | 0 | 0 |
| $t=0+$ |  |  |  |  |  |  |
| $\mathrm{t}=\mathbf{1 h}$ - |  |  |  |  |  |  |
| $\mathrm{t}=\mathbf{1} \mathrm{h}+$ |  |  |  |  |  |  |
| $t \rightarrow \infty$ |  |  |  |  |  |  |

Solution of ex. 1 (cont.)

|  | $\mathrm{i}_{\mathrm{R}}[\mathrm{A}]$ | $\mathrm{i}_{\mathrm{C}}[\mathbf{A}]$ | $\mathrm{i}_{\mathrm{L}}[\mathrm{A}]$ | $\mathrm{v}_{\mathrm{R}}[\mathrm{V}]$ | $\mathrm{v}_{\mathrm{C}}[\mathrm{V}]$ | $\mathrm{v}_{\mathrm{L}}[\mathrm{V}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}=0$ - | 0 | 0 | 0 | 0 | 0 | 0 |
| $t=0+$ |  |  | 0 |  | 0 |  |
| $\mathrm{t}=1 \mathrm{~h}$ - |  |  |  |  |  |  |
| $\mathrm{t}=1 \mathrm{~h}+$ |  |  |  |  |  |  |
| $t \rightarrow \infty$ |  |  |  |  |  |  |

$t=0+$
$v_{c}(0+)=v_{c}(0-)=0$
$i_{L}(0+)=i_{L}(0-)=0$
Questions:

1. How is switch 1 ? close
2. How is C? empty ${ }^{d}>S C$
3. How is L? empty $=>\mathrm{OC}$

$\mathrm{v}_{\mathrm{C}}=0 \mathrm{~V}$
$\mathrm{i}_{\mathrm{L}}=0 \mathrm{~A}$
$\mathrm{i}_{\mathrm{R}}=0 \mathrm{~A}$
$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$
$\mathrm{v}_{\mathrm{L}}=\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$
$\mathrm{i}_{\mathrm{C}}=8 \mathrm{~A}$

## Solution of ex. 1 (cont.)



Solution of ex. 1 (cont.)

|  | $\mathrm{i}_{\mathrm{R}}[\mathbf{A}]$ | $\mathrm{i}_{\mathrm{C}}[\mathrm{A}]$ | $\mathrm{i}_{\mathrm{L}}[\mathrm{A}]$ | $\mathrm{v}_{\mathrm{R}}[\mathrm{V}]$ | $\mathrm{v}_{\mathrm{C}}[\mathrm{V}]$ | $\mathrm{v}_{\mathrm{L}}[\mathrm{V}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}=0$ - | 0 | 0 | 0 | 0 | 0 | 0 |
| $t=0+$ | 0 | 8 | 0 | 0 | 0 | 0 |
| $\mathrm{t}=1 \mathrm{~h}$ - |  |  |  |  |  |  |
| $\mathrm{t}=\mathbf{1} \mathrm{h}+$ |  |  |  |  |  |  |
| $t \rightarrow \infty$ |  |  |  |  |  |  |

## $\mathrm{t}=\mathbf{1} \mathrm{h}$ -

Questions:

1. How are switches $1 \& 2$ ? 1 closed, 2
2. How is C? full $=>O C$

3. How is $L$ ? full $=>S C$
$\mathrm{i}_{\mathrm{C}}=\mathrm{OA}$
$\mathrm{v}_{\mathrm{L}}=\mathrm{V}_{\mathrm{AC}}=0 \mathrm{~V}$
$\mathrm{i}_{\mathrm{L}}=8 \mathrm{~A}$
$i_{R}=-8 A$
$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{AB}}=-80 \mathrm{~V}$
$\mathrm{v}_{\mathrm{C}}=\mathrm{v}_{\mathrm{BC}}=80 \mathrm{~V}$

## Solution of ex. 1 (cont.)



Solution of ex. 1 (cont.)

|  | $\mathrm{i}_{\mathbf{R}}[\mathbf{A}]$ | $\mathbf{i}_{\mathrm{C}}[\mathbf{A}]$ | $\mathrm{i}_{\mathrm{L}}[\mathbf{A}]$ | $\mathbf{v}_{\mathbf{R}}[\mathbf{V}]$ | $\mathbf{v}_{\mathrm{C}}[\mathbf{V}]$ | $\mathbf{v}_{\mathbf{L}}[\mathbf{V}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{t}=\mathbf{0 -}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{t}=\mathbf{0 +}$ | 0 | 8 | 0 | 0 | 0 | 0 |
| $\mathbf{t}=\mathbf{1} \mathbf{h}-$ | -8 | 0 | 8 | -80 | 80 | 0 |
| $\mathbf{t}=\mathbf{1} \mathbf{h +}$ |  |  |  |  |  |  |
| $\mathbf{t} \rightarrow \boldsymbol{\infty}$ |  |  |  |  |  |  |

Solution of ex. 1 (cont.)

|  | $\mathbf{i}_{\mathbf{R}}[\mathbf{A}]$ | $\mathbf{i}_{\mathrm{C}}[\mathbf{A}]$ | $\mathbf{i}_{\mathrm{L}}[\mathbf{A}]$ | $\mathbf{v}_{\mathbf{R}}[\mathbf{V}]$ | $\mathbf{v}_{\mathrm{C}}[\mathbf{V}]$ | $\mathbf{v}_{\mathbf{L}}[\mathbf{V}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{t}=\mathbf{0 -}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{t}=\mathbf{0 +}$ | 0 | 8 | 0 | 0 | 0 | 0 |
| $\mathbf{t}=\mathbf{1 h} \mathbf{h}$ | -8 | 0 | 8 | -80 | 80 | 0 |
| $\mathbf{t}=\mathbf{1} \mathbf{h +}$ |  |  | 8 |  | 80 |  |
| $\mathbf{t} \rightarrow \boldsymbol{\infty}$ |  |  |  |  |  |  |

$$
\begin{aligned}
& t=1 \mathrm{~h}+ \\
& \mathrm{v}_{\mathrm{C}}(1 \mathrm{~h}+)=\mathrm{v}_{\mathrm{C}}(1 \mathrm{~h}-)=80 \mathrm{~V} \\
& \mathrm{i}_{\mathrm{L}}(1 \mathrm{~h}+)=\mathrm{i}_{\mathrm{L}}(1 \mathrm{~h}-)=8 \mathrm{~A} \\
& \text { Switches } 1 \& 2 \text { closed } \\
& v_{C}=v_{B C}=80 \mathrm{~V} \\
& i_{L}=8 \mathrm{~A} \\
& i_{R}=2-i_{L}=-6 \mathrm{~A} \\
& v_{R}=-60 \mathrm{~V} \\
& i_{C}=i_{R}+8=2 \mathrm{~A} \\
& v_{L}=v_{A C}=v_{A B}+v_{B C}=v_{R}+v_{C}=20 \mathrm{~V}
\end{aligned}
$$

## Solution of ex. 1 (cont.)



Solution of ex. 1 (cont.)

|  | $\mathbf{i}_{\mathbf{R}}[\mathbf{A}]$ | $\mathbf{i}_{\mathrm{C}}[\mathbf{A}]$ | $\mathbf{i}_{\mathbf{L}}[\mathbf{A}]$ | $\mathbf{v}_{\mathbf{R}}[\mathbf{V}]$ | $\mathbf{v}_{\mathrm{C}}[\mathbf{V}]$ | $\mathbf{v}_{\mathbf{L}}[\mathbf{V}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{t}=\mathbf{0 -}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{t}=\mathbf{0 +}$ | 0 | 8 | 0 | 0 | 0 | 0 |
| $\mathbf{t}=\mathbf{1} \mathbf{h}-$ | -8 | 0 | 8 | -80 | 80 | 0 |
| $\mathbf{t}=\mathbf{1} \mathbf{h +}$ | -6 | 2 | 8 | -60 | 80 | 20 |
| $\mathbf{t} \rightarrow \boldsymbol{\infty}$ |  |  |  |  |  |  |

## $t \rightarrow \infty$

Switches 1 \& 2 closed
C Full => OC -Y-
L Full $=>$ SC - -
$\mathrm{i}_{\mathrm{C}}=0 \mathrm{~A}$
$\mathrm{v}_{\mathrm{L}}=0 \mathrm{~V}$
$\mathrm{i}_{\mathrm{R}}=-8 \mathrm{~A}$
$\mathrm{V}_{\mathrm{R}}=-80 \mathrm{~V}$
$\mathrm{i}_{\mathrm{L}}=8+2=10 \mathrm{~A}$
$\mathrm{v}_{\mathrm{C}}=\mathrm{v}_{\mathrm{BA}}=-\mathrm{v}_{\mathrm{R}}=80 \mathrm{~V}$

## Solution of ex. 1 (cont.)



Solution of ex. 1 (cont.)

|  | $\mathbf{i}_{\mathbf{R}}[\mathbf{A}]$ | $\mathbf{i}_{\mathbf{C}}[\mathbf{A}]$ | $\mathbf{i}_{\mathbf{L}}[\mathbf{A}]$ | $\mathbf{v}_{\mathbf{R}}[\mathbf{V}]$ | $\mathbf{v}_{\mathrm{C}}[\mathbf{V}]$ | $\mathbf{v}_{\mathbf{L}}[\mathbf{V}]$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{t}=\mathbf{0 -}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{t}=\mathbf{0 +}$ | 0 | 8 | 0 | 0 | 0 | 0 |
| $\mathbf{t}=\mathbf{1 h} \mathbf{h}$ | -8 | 0 | 8 | -80 | 80 | 0 |
| $\mathbf{t}=\mathbf{1} \mathbf{h +}$ | -6 | 2 | 8 | -60 | 80 | 20 |
| $\mathbf{t} \rightarrow \boldsymbol{\infty}$ | -8 | 0 | 0 | -80 | 80 | 0 |

## Example 2

Switch was open for a long time, at $\mathrm{t}=0 \mathrm{sec}$ it closes
Find: $i_{L}$ and $v_{L}$ for $t \geq 0$


$$
t=0-
$$

## Solution of ex. 2

Switch: open, no source => $i_{L}=0 A$
$\mathbf{t}=\mathbf{0}+$
$i_{L}(0+)=i_{L}(0-)=0 A$
$t \rightarrow \infty$

1. Switch: closed
2. L: full => SC J
3. $\tau=L / R_{\mathrm{th}}=10 / 10=1 \mathrm{sec}$
4. $k=i_{L}(0+)-i_{S S}=0-12=-12$
$\Rightarrow$ For $\mathrm{t} \geq 0$ :
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=12-12 e^{-t}[\mathrm{~A}]$
$\mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{L} \frac{d i_{L}}{d t}=10(-12)(-1) e^{-t}=120 e^{-t}[\mathrm{~V}]$


## Solution of ex. 2 (cont.)

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}(0+)=\mathrm{i}_{\mathrm{L}}(0-)=0 \mathrm{~A} \\
& \mathrm{i}_{\mathrm{SS}}=12 \mathrm{~A} \\
& \mathrm{t}=1 \mathrm{sec} \\
& \mathrm{~V}_{\mathrm{L}}(0-)=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{L}}(0)=120 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{L}}(\infty)=0 \mathrm{~V}
\end{aligned}
$$



## Example 3

Switch was open for a long time, at $\mathrm{t}=0 \mathrm{sec}$ it closes
Find: $i_{L}, v_{L}$ and ifor $t \geq 0$


## $t=0-$

## Solution of ex. 3

1. Switch: open
2. $L$ : full $=>S C=>i_{L}=10 A$
$t=0+$
$\mathrm{i}_{\mathrm{L}}(0+)=\mathrm{i}_{\mathrm{L}}(0-)=10 \mathrm{~A}$

## $t \rightarrow \infty$

1. Switch: closed
2. L : full $=>\mathrm{SC} \quad-\mathrm{i}_{\mathrm{L}}(\infty)=\mathrm{i}_{\mathrm{SS}}=\frac{20}{20}+10=11 \mathrm{~A}$
3. $\tau=L / R_{\text {th }}=2 / 10=\frac{1}{5} \mathrm{sec}$
4. $k=i_{L}(0+)-i_{S S}=10-11=-1$
$\Rightarrow$ For $\mathrm{t} \geq 0$ :
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=11-e^{-5 t}$
$\mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{L} \frac{d i_{L}}{d t}=2(-1)(-5) e^{-5 t}=10 e^{-5 t}$


## Solution of ex. 3 (cont.)

For $\mathrm{t} \geq 0$ : find i

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}(\mathrm{t})=11-e^{-5 t} \\
& \mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{L} \frac{d i_{L}}{d t}=10 e^{-5 t} \\
& \mathrm{KCL} \text { at A: } \mathrm{i}=\mathrm{i}_{\mathrm{L}}(\mathrm{t})-\mathrm{i} \\
& \mathrm{i}^{\prime}=\frac{20-v \mathrm{~L}}{20} \\
& \mathrm{i}=11-e^{-5 t}-\frac{20-10 e^{-5 t}}{20} \\
& =10-1 / 2 e^{-5 t}
\end{aligned}
$$



## Solution of ex. 3 (cont.)

$$
\begin{aligned}
& i_{L}(0+)=i_{L}(0-)=10 \mathrm{~A} \\
& i_{\text {SS }}=11 \mathrm{~A} \\
& \tau=0.2 \mathrm{sec} \\
& \mathrm{~V}_{\mathrm{L}}(0-)=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{L}}(0)=120 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{L}}(\infty)=0 \mathrm{~V}
\end{aligned}
$$



## Example 4

Switch was open for a long time, at t = 0 sec it closes then 14 ms later it reopens again
Find: $i_{1}, i_{2}$ and $v_{L}$ for $t \geq 0$


## Solution of ex. 4

The way to treat this problem:
Step 1: Ignore the fact that after $14 m s$ switch reopens again i.e., solve the problem as if after $t=0+$ the switch is closed 1 for ever.
Step 2: Calculate $i_{L}$ for $t=14 \mathrm{~ms}$
Step 3: Define a new time scale: $t^{\prime}=t-14$ i.e., when $t=14 \mathrm{~ms}, t^{\prime}=0 \mathrm{sec}$.
Then continue to solve the problem using $t^{\prime}$ with $i_{\mathrm{L}}\left(\mathrm{t}^{\prime}=0-\right)$ equal to the value calculated in step 2.
Step 4: Summarize all results with respect to the time $t$

## Solution of ex. 4 (cont.)

## $\mathrm{t}=\mathbf{0}-$

1. Switch: open
2. L : empty $=>\mathrm{i}_{\mathrm{L}}=0 \mathrm{~A}$
$t=0+$
$\mathrm{i}_{\mathrm{L}}(0+)=\mathrm{i}_{\mathrm{L}}(0-)=0 \mathrm{~A}$
$t \rightarrow \infty$
$\begin{aligned} & \text { 1. Switch: closed } \\ & \text { 2. } \mathrm{L}: \text { full }=>\mathrm{SC}\end{aligned} \quad \mathrm{i}_{\mathrm{L}}(\infty)=\mathrm{i}_{S S}=\frac{60}{5}=12 \mathrm{~A}$
3. $\tau=\mathrm{L} / \mathrm{R}_{\mathrm{th}}=0.1 / 5=\frac{1}{50} \mathrm{sec}$
4. $\mathrm{k}=\mathrm{i}_{\mathrm{L}}(0+)-\mathrm{i}_{\mathrm{SS}}=0-12=-12$
$\Rightarrow$ For $\mathrm{t} \geq 0$ :
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=12\left(1-e^{-50 t}\right)$
$\mathrm{i}_{\mathrm{L}}(14 \mathrm{~ms})=12\left(1-50 e^{-50 \times 0.014}\right)=6 \mathrm{~A}$
$\mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{L} \frac{d i_{L}}{d t}=0.1(-12)(-50) e^{-50 t}=60 e^{-50 t}$

$5 \Omega$


## Solution of ex. 4 (cont.)

Define $t^{\prime}=t-14 m s$
$\mathrm{t}^{\prime}=0$ -

1. Switch: closed $=>i_{\mathrm{L}}=6 \mathrm{~A}$ (see $\mathrm{t}=14 \mathrm{~ms}$ )
$\mathrm{t}^{\prime}=\mathbf{0}+$
$i_{L}(0+)=i_{L}(0-)=6 A$
$\mathrm{t}^{\prime} \rightarrow \infty$
$\begin{aligned} & \text { 1. Switch: open } \\ & \text { 2. L: empty }\end{aligned} \quad \mathrm{i}_{\mathrm{L}}(\infty)=\mathrm{i}_{S S}=0 \mathrm{~A}$
2. $\tau^{\prime}=\mathrm{L} / \mathrm{R}_{\mathrm{th}}=0.1 / 10=\frac{1}{100} \mathrm{sec}$

3. $k=i_{L}(0+)-i_{S S}=6$
$\Rightarrow$ For $\mathbf{t}^{\prime} \geq 0$ :
$\mathrm{i}_{\mathrm{L}}\left(\mathrm{t}^{\prime}\right)=6 e^{-100 t^{\prime}}$
$\mathrm{v}_{\mathrm{L}}\left(\mathrm{t}^{\prime}\right)=\mathrm{L} \frac{d i_{L}}{d t}=0.1(6)(-100) e^{-100 t^{\prime}}=-60 e^{-100 t^{\prime}}$

## Solution of ex. 4 (cont.)

$$
\begin{align*}
& \text { For } 0 \leq \mathrm{t} \leq 14 \mathrm{msec} \\
& \qquad \begin{array}{l}
\mathrm{i}_{\mathrm{L}}(\mathrm{t})=12\left(1-e^{-50 t}\right) \\
\mathrm{V}_{\mathrm{L}}(\mathrm{t})=60 e^{-50 t}
\end{array} \tag{1}
\end{align*}
$$

For $\mathrm{t} \geq 14 \mathrm{msec}$

$$
\begin{align*}
\mathrm{i}_{\mathrm{L}}(\mathrm{t}) & =6 e^{-100(t-0.014)}  \tag{3}\\
\mathrm{v}_{\mathrm{L}}(\mathrm{t}) & =-60 e^{-100(t-0.014)} \tag{4}
\end{align*}
$$

For $\mathrm{t}=0^{-}$

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}=0 \mathrm{~A} \\
& \mathrm{v}_{\mathrm{L}}=0 \mathrm{~V} \\
& \mathrm{i}_{1}=0 \mathrm{~A} \\
& \mathrm{i}_{2}=0 \mathrm{~A}
\end{aligned}
$$

For $\mathrm{t}=0^{+}$

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}=0 \mathrm{~A} \\
& (2)=\mathrm{v}_{\mathrm{L}}=30 \mathrm{~V} \\
& (4)=\mathrm{v}_{\mathrm{L}}=-60 \mathrm{~V} \\
& \mathrm{i}_{1}=0 \\
& \mathrm{i}_{2}=12 \mathrm{~A}(=60 / 5)
\end{aligned}
$$

For $\mathrm{t}=14 \mathrm{msec}^{-}$

$$
\begin{aligned}
& \text { (1) or }(3) \Rightarrow i_{L}=6 \mathrm{~A} \\
& (2) \Rightarrow \mathrm{V}_{\mathrm{L}}=30 \mathrm{~V} \\
& \mathrm{i}_{1}=6 \mathrm{~A} \\
& \mathrm{i}_{2}=12 \mathrm{~A}
\end{aligned}
$$

For $\mathrm{t}=14 \mathrm{msec}^{+}$

$$
\begin{aligned}
& i_{L}=6 A \\
& (4)=>v_{L}=-60 V \\
& i_{1}=6 A \\
& i_{2}=-6 A
\end{aligned}
$$

## Solution of ex. 4 (cont.)




Võ Văn Tới
School of Biomedical Engineering
International University of Vietnam National Universities
HCM City, Vietnam
Email: vvtoi@hcmiu.edu.vn
Website: www.hcmiu.edu.vn/bme


