

Principle of EE1 Lesson 6

Prof. Võ Văn Tới
School of Biomedical Engineering
Vice-Provost for Life and Health Science, Engineering and Technology
Development of
International University
Vietnam National Universities – HCMC

Inductor and Inductance

Phenomenon

Inductor is charging

II is called an Inductor = storing energy element. It can be empty or full.

Empty => Open switch, Full => Closed switch

Inductor is discharging, it acts like an energy source

Inductors

Transformer

Symbols of inductor

Inductance

```
L = \frac{\mu N^2 A}{l}
Where:
L = Inductance in henries (H)
\mu = permeability (Wb/A \cdot m)
N = number of turns in coil
A = area encircled by coil (m^2)
l = lenth of coil (m)
```


Basic notes

- 1. Inductor is a storing energy element: it can be charged and discharged => time constant $\tau = L/R_{th}$
- 2. Empty => Open switch, Full => Closed switch
- 3. Magnetic flux φ [Wb] = L [H] . I [A]
- 4. Stored energy W [J] = $\frac{1}{2}$ L [H] . I² [A]
- 5. Current cannot change instantly $i(0^+) = i(0^-)$
- 6. Voltage changes instantly v(0) = max

7.
$$v_L(t) = \frac{d\varphi}{dt} = L \frac{di}{dt}$$

Inductor connections

Series

- Same current
- $\circ L_{eq} = L_1 + L_2 + L_3 + ...$

Parallel

- Same voltage V
- $0.1/L_{eq} = 1/L_1 + 1/L_2 + 1/L_3 + ...$

General equations

$$i_{L}(t) = I_{ss} + k e^{-\frac{t}{\tau}}$$

- $i_L(t)$: instantaneous current valid for all t
- I_{ss} : steady state current i.e. when $i_L(\infty)$
- k: $constant = I_L(0) I_{ss}$
- $\tau = L/R_{th}$

$$v_{L}(t) = \frac{d\varphi}{dt} = L \frac{di}{dt}$$

Comparison between Capacitor and Inductor

<u>Capacitor</u>	<u>Switch</u>	<u>Inductor</u>
Full	Open	Empty
Empty	Closed	Full

Capacitor

$$v_{c}(t) = V_{ss} + k e^{-\frac{t}{\tau}}$$

- $v_c(t)$: instantaneous voltage valid for all t
- V_{ss} : steady state voltage i.e. when $v_c(\infty)$
- k: $constant = V_C(0) V_{ss}$
- $\tau = R_{th}C$

$$i_{c}(t) = C \frac{dv}{dt}$$

Inductor

$$i_L(t) = I_{ss} + k e^{-\frac{t}{\tau}}$$

- $i_L(t)$: instantaneous current valid for all t
- I_{ss} : steady state current i.e. when $i_L(\infty)$
- k: $constant = I_L(0) I_{ss}$
- $\tau = L/R_{th}$

$$\mathbf{v}_{\mathbf{L}}(\mathbf{t}) = \mathbf{L} \, \frac{di}{dt}$$

Example 1

Switch 1 and 2 were open for a long time, at t = 0 sec, 1 closes then 1h later 2 closes

At
$$t = 0^-$$
, $t = 0^+$, $t = 1h^-$, $t = 1h^+$, $t \to \infty$

Solution of ex. 1

t = 0

All switches are open => everything is 0

	i _R [A]	i _C [A]	i _L [A]	v _R [V]	$\mathbf{v_{C}[V]}$	$v_L[V]$
t = 0-	0	0	0	0	0	0
t = 0+						
t = 1h-						
t = 1h +						
$t \rightarrow \infty$						

	i _R [A]	i _C [A]	i _L [A]	v _R [V]	v _C [V]	v _L [V]
t = 0-	0	0	0	0	0	0
t = 0+			0		0	
t = 1h-						
t = 1h+						
$t \rightarrow \infty$						

t = 0+

$$v_{C}(0+) = v_{C}(0-) = 0$$

$$i_{L}(0+) = i_{L}(0-) = 0$$

Questions:

- 1. How is switch 1? close
- 2. How is C? empty d > SC

3. How is L? empty \Rightarrow OC

$$v_C = 0V$$

$$i_1 = 0A$$

$$i_R = 0A$$

$$v_R = 0V$$

$$v_L = v_R = 0V$$

$$i_C = 8A$$

	i _R [A]	i _C [A]	i _L [A]	v _R [V]	$\mathbf{v_{C}[V]}$	$\mathbf{v_L[V]}$
t = 0-	0	0	0	0	0	0
t = 0+	0	8	0	0	0	0
t = 1h-						
t = 1h+						
$t \rightarrow \infty$						

t = 1h

Questions:

- 1. How are switches 1 & 2?1 closed, 2
- 2. How is C? full => OC

3. How is L? full \Rightarrow SC

$$i_C = 0A$$

$$V_L = V_{AC} = OV$$

$$i_1 = 8A$$

$$i_R = -8A$$

$$v_{R} = v_{AB} = -80 \text{ V}$$

$$v_C = v_{BC} = 80V$$

	i _R [A]	i _C [A]	i _L [A]	v _R [V]	v _C [V]	$v_{L}[V]$
t = 0-	0	0	0	0	0	0
t = 0+	0	8	0	0	0	0
t = 1h-	-8	0	8	-80	80	0
t = 1h+						
$t \rightarrow \infty$						

	i _R [A]	i _C [A]	i _L [A]	v _R [V]	v _C [V]	v _L [V]
t = 0-	0	0	0	0	0	0
t = 0+	0	8	0	0	0	0
t = 1h-	-8	0	8	-80	80	0
t = 1h +			8		80	
$t \rightarrow \infty$						

t = 1h +

$$v_{c}$$
 (1h+) = v_{c} (1h-) = 80V
 i_{L} (1h+) = i_{L} (1h-) = 8A
Switches 1 & 2 closed

$$v_{C} = v_{BC} = 80V$$
 $i_{L} = 8A$
 $i_{R} = 2 - i_{L} = -6A$
 $v_{R} = -60 V$
 $i_{C} = i_{R} + 8 = 2A$
 $v_{L} = v_{AC} = v_{AB} + v_{BC} = v_{R} + v_{C} = 20V$

	i _R [A]	i _C [A]	i _L [A]	v _R [V]	$v_{C}[V]$	$v_L[V]$
t = 0-	0	0	0	0	0	0
t = 0+	0	8	0	0	0	0
t = 1h-	-8	0	8	-80	80	0
t = 1h+	-6	2	8	-60	80	20
$t \rightarrow \infty$						

$t \rightarrow \infty$

Switches 1 & 2 closed

$$i_C = 0A$$

$$v_1 = 0V$$

$$i_R = -8A$$

$$v_{R} = -80 \text{ V}$$

$$i_1 = 8 + 2 = 10A$$

$$v_{C} = v_{BA} = -v_{R} = 80V$$

	i _R [A]	i _C [A]	i _L [A]	v _R [V]	$v_{C}[V]$	$v_L[V]$
t = 0-	0	0	0	0	0	0
t = 0+	0	8	0	0	0	0
t = 1h-	-8	0	8	-80	80	0
t = 1h+	-6	2	8	-60	80	20
$t \rightarrow \infty$	-8	0	0	-80	80	0

Example 2

Switch was open for a long time, at t = 0 sec it closes

Find: i_L and v_L for $t \ge 0$

Solution of ex. 2

t = 0

Switch: open, no source $\Rightarrow i_L = 0A$

t = 0+

$$i_1(0+) = i_1(0-) = 0A$$

$t \rightarrow \infty$

- 1. Switch: closed $i_{L}(\infty) = 120/10 = 12A = i_{SS}$
- 2. L: full => SC
- 3. $\tau = L/R_{th} = 10/10 = 1 \text{ sec}$
- 4. $k = i_L(0+) i_{SS} = 0 12 = -12$
- \Rightarrow For $t \ge 0$:

$$i_L(t) = 12 - 12 e^{-t} [A]$$

$$v_L(t) = L \frac{di_L}{dt} = 10 (-12) (-1) e^{-t} = 120 e^{-t} [V]$$

$$i_{L}(0+) = i_{L}(0-) = 0A$$
 $i_{SS} = 12A$
 $\tau = 1 \text{ sec}$
 $v_{L}(0-) = 0V$
 $v_{L}(0) = 120V$
 $v_{L}(\infty) = 0V$

Example 3

Switch was open for a long time, at t = 0 sec it closes

Find: i_L , v_L and i for $t \ge 0$

t = 0

Solution of ex. 3

- 1. Switch: open
- 2. L: full => SC => i_1 = 10A

t = 0+

$$i_{L}(0+) = i_{L}(0-) = 10A$$

$t \rightarrow \infty$

1. Switch: closed
2. L: full => SC
$$i_L(\infty) = i_{SS} = \frac{20}{20} + 10 = 11A$$

- 3. $\tau = L/R_{th} = 2/10 = \frac{1}{5} sec$
- 4. $k = i_L(0+) i_{SS} = 10 11 = -1$
- \Rightarrow For $t \ge 0$:

$$i_{I}(t) = 11 - e^{-5t}$$

$$v_L(t) = L \frac{di_L}{dt} = 2 (-1) (-5) e^{-5t} = 10 e^{-5t}$$

For
$$t \ge 0$$
: find i
 $i_L(t) = 11 - e^{-5t}$
 $v_L(t) = L \frac{di_L}{dt} = 10 e^{-5t}$

KCL at A:
$$i = i_L(t) - i'$$

 $i' = \frac{20 - vL}{20}$

$$i = 11 - e^{-5t} - \frac{20 - 10 e^{-5t}}{20}$$
$$= 10 - \frac{1}{2} e^{-5t}$$

$$i_{L}(0+) = i_{L}(0-) = 10A$$
 $i_{SS} = 11A$
 $\tau = 0.2 \text{ sec}$
 $v_{L}(0-) = 0V$
 $v_{L}(0) = 120V$
 $v_{L}(\infty) = 0V$

Example 4

Switch was open for a long time, at t = 0 sec it closes then 14ms later it reopens again

Find: i_1 , i_2 and v_L for $t \ge 0$

Solution of ex. 4

The way to treat this problem:

<u>Step 1</u>: Ignore the fact that after 14ms switch reopens again i.e., solve the problem as if after t = 0+ the switch is closed 1 for ever.

<u>Step 2</u>: Calculate i_L for t = 14ms

<u>Step 3</u>: Define a new time scale: t' = t - 14 i.e., when t = 14 ms, t' = 0 sec. Then continue to solve the problem using t' with $i_L(t'=0-)$ equal to the value calculated in step 2.

Step 4: Summarize all results with respect to the time t

t = 0

- 1. Switch: open
- 2. L: empty => $i_1 = 0A$

t = 0+

$$i_1(0+) = i_1(0-) = 0A$$

$t \rightarrow \infty$

3.
$$\tau = L/R_{th} = 0.1/5 = \frac{1}{50} sec$$

4.
$$k = i_L(0+) - i_{SS} = 0 - 12 = -12$$

$$=>$$
 For $t \ge 0$:

$$i_L(t) = 12 (1 - e^{-50t})$$

 $i_L(14\text{ms}) = 12 (1-50 e^{-50x0.014}) = 6A$

$$v_L(t) = L \frac{di_L}{dt} = 0.1 (-12) (-50) e^{-50t} = 60 e^{-50t}$$

Define t' = t - 14ms

1. Switch: closed $\Rightarrow i_1 = 6A$ (see t = 14ms)

$$t' = 0+$$

$$i_1(0+) = i_1(0-) = 6A$$

$t' \rightarrow \infty$

1. Switch: open
2. L: empty
$$i_L(\infty) = i_{SS} = 0A$$

3.
$$\tau' = L/R_{th} = 0.1/10 = \frac{1}{100} sec$$

4.
$$k = i_L(0+) - i_{SS} = 6$$

$$\Rightarrow$$
 For $t' \ge 0$:

$$i_L(t') = 6 e^{-100t'}$$

$$v_L(t') = L \frac{di_L}{dt} = 0.1 (6) (-100) e^{-100t'} = -60 e^{-100t'}$$

For $0 \le t \le 14$ msec

$$i_L(t) = 12 (1 - e^{-50t})$$
 (1)

$$v_L(t) = 60 e^{-50t}$$
 (2)

For $t \ge 14$ msec

$$i_L(t) = 6 e^{-100(t-0.014)}$$
 (3)

$$v_{\rm I}(t) = -60 e^{-100(t-0.014)}$$
 (4)

$$\begin{aligned} &\text{For } t = 0^- \\ & i_L = 0 A \\ & v_L = 0 V \\ & i_1 = 0 A \\ & i_2 = 0 A \end{aligned}$$
 For $t = 0^+$

$$\begin{aligned} &i_L = 0 A \\ &(2) \Rightarrow v_L = 30 V \\ &(4) \Rightarrow v_L = -60 V \\ &i_1 = 0 \\ &i_2 = 12 A \ (=60/5) \end{aligned}$$
 For $t = 14 \text{msec}^-$

$$(1) \text{ or } (3) \Rightarrow i_L = 6 A \\ &(2) \Rightarrow v_L = 30 V \end{aligned}$$

$$i_1 = 6 A \\ &i_2 = 12 A$$
For $t = 14 \text{msec}^+$

$$i_L = 6 A \\ &(4) \Rightarrow v_L = -60 V$$

$$i_1 = 6 A \\ &(4) \Rightarrow v_L = -60 V$$

$$i_1 = 6 A \\ &(4) \Rightarrow v_L = -60 V$$

Võ Văn Tới School of Biomedical Engineering International University of Vietnam National Universities HCM City, Vietnam Email: vvtoi@hcmiu.edu.vn

Website: www.hcmiu.edu.vn/bme

