Show simple item record

dc.contributor.authorTien, Nguyen Phuoc
dc.date.accessioned2018-01-13T03:57:29Z
dc.date.accessioned2018-05-17T04:00:19Z
dc.date.available2018-01-13T03:57:29Z
dc.date.available2018-05-17T04:00:19Z
dc.date.issued2015
dc.identifier.other022003523
dc.identifier.urihttp://10.8.20.7:8080/xmlui/handle/123456789/2130
dc.description.abstractThis research proposes a new background subtraction technique with disorder detection approach for traffic surveillance system. By applying entropy function, we recognize the disordered frames (DF) from image sequence which adversely affect to background images, then remove them from background modeling step by using 3-state process. The background and foreground are produced by Gaussian mixture model from the other qualified images. As the result, the new approach obtains astonishing result under real-life traffic condition. It also decreases computation time for background subtraction step in real-time system. Keywords: background subtraction, background modeling, disorder detection, mixture of Gaussian model, entropy.en_US
dc.description.sponsorshipDr. Ha Viet Uyen Synhen_US
dc.language.isoen_USen_US
dc.publisherInternational University - HCMCen_US
dc.subjectBackground subtraction; Traffic surveillance system; Disorder detectionen_US
dc.titleDisorder detection approach to background modelling for traffic surveillance systemen_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record